
Holiday 
Readiness 
2023

IBM Sterling Order 
Management

Panel Discussion



Have a Question(s)?



Bobby Thomas
Performance Architect, SRE - Sterling order management 

Your Holiday Readiness Team
... and today’s panelist

Mike Callaghan
Program Director – WW Supply Chain Support

Senthil Ponnusamy
Technical Lead / SRE Advisor – 
Order Management Support

IBM Sterling / © 2023 IBM Corporation

Chris Burgess
Manager – WW Support Experience Team

Jelena Markovic
Support SME
Order Management Support

Jitendra Buge
Technical Support Engineer
Order Management Support

3

Shoeb Bihari
Technical Lead / SRE Advisor – 
Order Management Support

CB

Vishal Aurora
Advisory Software Engineer – IBM Sterling 

Vijaya Bashyam
STSM, Chief Architect Containerization and 
Performance, IBM Sterling

Yaduvesh Sharma
Senior Software Architect - Sterling order management

Paresh Vinaykya
Executive Technical Account Manager – Expertise Connect

Tin Vo
Senior Software Developer - Sterling order management 



Let’s Discuss

IBM Sterling / © 2023 IBM Corporation 4

Our Journey to peak success

– Review promising and sourcing APIs 
– HotSku & OLA
– Capacity: Resource pool locking & 

optimization

– Item-based allocation (IBA) use & 
considerations for peak. 

– Sterling Inventory Visibility (IV) consideration. 

– IBM Order Management Software Certified 
Containers

– Performance
– Support Mustgather

CB



The Path Ahead

Journey to Peak Success

IBM Sterling / © 2023 IBM Corporation 5

March

Journey to Peak Success 

Retrospect
Common issues
Enhancements
Your role!

May

Payment Integration & UE 
Implementation 

Hear from IBM Payment SMEs on  
common payment configurations 
and customizations. 
Walk-thru of new features. 

August

Recommendations & Best 
Practices 

Hear  from IBM OMS Support 
SMEs. 

October

Execution 

Peak Day Mitigation!

September

Panel Discussion

Open discussion with IBM 
engineering and community 
experts on peak readiness. 

The IBM OMS Support team are continuously expanding our technical best practices based 
on the observations and learnings over our supported launches and peak events!

MC



IBM Holiday Readiness 
Preparation

IBM Sterling / © 2023 IBM Corporation

IBM Order Management 
teams are focused year-
round on ensuring stability 
during your peak season. 

Performance Experts across 
Engineering, SRE, and 
Support collaborate to ensure 
the IBM platform, operations 
and support are ready. 

The primary objective is to 
ensure stability and 
performance, and to quickly 
identify and mitigate any 
potential issues that do arise. 

Platform Stability

Regular IBM cross-functional  
retrospectives drive continuous 
improvement, early identification 
and mitigation of potential risks

• Production performance and capacity 
reviews – comparison of current and 
projected peak workloads

• Internal Platform and application 
monitoring, alerts and runbooks

• Final major release (23.3) to address 
any remaining critical product issues

• Published Change Management and 
Operations freeze 

• Internal Executive reviews to discuss 
status and action of key accounts

• Mobilization of cross-functional SWAT 
team with for rapid engagement 24x7

Best Practices

Publish critical updates to a 
robust collection of self-help 
focused on peak success

• Derived from Support and Engineering 
experiences with production operations 
and internal performance testing

• 3 external webinars complete in 2023, 
2 more on the horizon 

• Journey to Peak Success  (March)
• Payment Integration & UE 

Implementation (May)
• Recommendations & 

Best Practices (August)
• Panel Discussion (now!)
• Peak Day Mitigation (October)

• Serve as basis for internal application 
configuration audits, proactive reviews

Prescriptive Guidance

Proactive ‘Event Readiness’ 
reviews in partnership with 
Expertise Connect for targeted 
client-specific recommendation

• Peak Questionnaire 

• Production performance, alert review

• Application workload & config

• Database workload & config

• Integrations (MQ, IV)

• Housekeeping activities

• Close loop on prior incidents

• Runbooks, mitigation techniques

• Case TS013870308 used to 
document 2023 proactive review

MC

https://www.ibm.com/support/pages/node/6962783
https://www.ibm.com/support/pages/node/6995885
https://www.ibm.com/support/pages/node/6995885
https://www.ibm.com/support/pages/ibm-order-management-holiday-readiness-series-2023-best-practices
https://www.ibm.com/support/pages/ibm-order-management-holiday-readiness-series-2023-best-practices


Sourcing & Scheduling 
Considerations

IBM Sterling / © 2023 IBM Corporation 7

Distribution Group
– Optimal Size

– Sourcing rule region hierarchy

– Priority of nodes when using 
multiple sequences

– Using sequence of sourcing and 
consideration around high 
availability. 

Sourcing is the process of determining from which node or supplier a product 
should be shipped. A sourcing rule can be created by specifying one or more of 
the following key parameters:  

Item Classifications or Item ID
Geographical region of the ship-to location or ship-to node
Minimum available capacity
Fulfillment type
Seller organization
Sourcing criteria

For each sourcing rule, you can then specify a sequence of node or distribution 
group to be used for sourcing the product, and performance of optimization logic 
depends on the complexity this setup. 

What are the optimal configuration to maximize the performance?

q Number of nodes qualifying from sourcing should be as minimized by region, 
proximity, etc.

q If all nodes are qualifying, Capacity availability constraint should be avoided, or 
capacity cache should be used

q Use of Externally defined sourcing Vs Sourcing Correction

q If reservation node can be considered as final ship node, then it should be 
passed on order line. This avoids schedule order to consider sourcing again.

q Order profile for pre-prod should be very similar to what is expected in 
production with regards to DC Ship, SFS, Pick up. 

Scheduling Rules
– Priority of nodes

– Distance of nodes from the 
ship-to location

– Date when the delivery can be 
made

– Number of resultant shipments

– Cost-based scheduling

Lead Times
– Whenever we review 

customer's scheduling rules, 
we typically see that lead times 
are set to default (30/60 days). 

– How does “lead time” impact 
availability lookup APIs?  What 
should be the optimal value? 

– Can availability lookup be kept 
simple as scheduling process 
will handle the optimization?

Guard Rails
– Solver Optimization: There is 

quite a bit of optimization that 
happens within promising API 
(Cost), as such there might be 
certain level of performance 
implications.

– How to keep optimization light-
weight?

– Termination properties

Use IBM Order Management for 
complex sourcing →

SP



Hot SKU
OLA (Optimistic Lock Avoidance)

IBM Sterling / © 2023 IBM Corporation 8

Locking PURPOSE

– The purpose for the lock record. 
Valid values: 

– 10 (Lock as Availability is 
now low)

– 11 (Use previous Hot SKU 
functionality). 

– 20 Low availability when 
granular locking is enabled.

– 21 to tracking 0 availability 
with granular locking. 

Tuneable Properties

– yfs.Hotsku.useAvailabil
ityAcrossNodes

– yfs.hotsku.useGranularL
ockingForItem

– yfs.hotsku.updateInvent
oryAfterAPIOutput

– yfs.hotsku.useGranularL
ockingForItem.mode

Properties to consider:
– Hot SKU properties with or without Optimistic Lock avoidance flag. 

– Initially availability assumed to be high, and lock is avoided 
until availability becomes low. 
(yfs.hotsku.lockOnlyOnLowAvailability=Y)

– Old Hot SKU properties

– Availability lookup locks YFS_INVENTORY_ITEM table based 
on velocity and inventory availability. 

Objectives:
– To process all orders in near real time and release to fulfillment 

node without any delay.

– To process the complete batch within a specified time window.

IBM Sterling Order Management System -
Hot SKU properties tuning →

INV_INVENTORY_ITEM_LOCK

– Rolling average calculation 
determines if availability low

– Entries for item-node-demand 
type combination

– If availability becomes high, then 
INV_INVENTORY_ITEM_LOCK 
record is removed.

Lock during Inventory 
Change

– Avoid locks to 
YFS_INVENTORY_ITEM

– yfs.hotsku.lockItemO
nInventoryChanges=N

– Lock contention moved from 
item level down to the item-
supply/item-demand level

– The adjustInventory API 
input must pass 
UseHotSKUFeature=Y SP



IBM Sterling / © 2023 IBM Corporation 9

Capacity
Objectives:
– Node has known individual capacity limit based on the delivery 

method [Ship and Pick]

– Node cannot handle any extra orders above the allocated capacity

– Reduce the lock contention in the 
YFS_RES_POOL_CAPCTY_CONSMPTN table.

Usage:

Capacity Cache
– Time-triggered agent pre calculates 

capacity and prepopulates 
YFS_CAPACITY_AVAILABILITY table

– Over allocation can be prevented 
using node locking properties. 

– yfs.nodecapacity.lock

– yfs.nodecapacity.thresh
old

Disable Capacity
– Do not adjust capacity to infinite; use 

changeResourcePool API* to 
disable capacity. 

– DISABLE_NODE_CAPACITY_FOR_ENT

– If capacity is set to 0, the capacity 
consumption record is deleted from the 
YFS_RES_POOL_CAPCTY_CONSMPTN 
table.

– Use capacity purge to delete the 0 
capacity records

Optimization Properties
– yfs.nodecapacity.ignoreCacheForLowAvailability

– yfs.capacityAvailablity.ignoreCacheForUpdateMode

– yfs.capacity.IgnoreCacheBelowThreshold

– yfs.nodecapacity.lock

– yfs.nodecapacity.threshold

– yfs.useNodeLocaleTimeForCapacityCheck

– yfs.persitCapacityAdjustments

– yfs.capacity.useMassAdjustCapacityDriver

API / Transaction Capacity 
Availability

Capacity 
Updates

reserveAvailableInventory Yes Yes
reserveItemInventory No Yes
createOrder No No
createOrder (w/ RESERVATION) No Yes
scheduleOrder Yes Yes
releaseOrder No Yes
changeOrderStatus/orderSchedule No Yes
createShipment/changeShipment No Yes
confirmShipment No No
manageCapacityReservation Yes Yes

Read more →
SP



IBM Sterling / © 2023 IBM Corporation 10

IBA (Item Based Allocation)
IBA process basically reallocates the promised demands for items of 
existing customer orders, to more suitable supplies, based on certain 
supply and demand changes in the system.

Objectives:
– Performance considerations when using IBA during peak, or high 

traffic. 

– Should we be running IBA required to be running for peak?

– Why is it resource intensive process?

Disable IBA
– Enterprise level IBA rule

– Node level configuration

– Item level configuration

– Purge YFS_IBA_TRIGGER

– Beaware of 
manageItemBasedAllocationTrigger

Best Practices
– Aggressively purge 

YFS_ORDER_RELEASE_STATUS table.

– Maintain YFS_IBA_TRIGGER table.

– Avoid running IBA with schedule or 
release workload. Time box the 
execution to avoid database 
contention. 

Considerations:
– If not required, disable IBA completely instead of just stopping the agent. 

– Hot SKU feature should not be enabled in IBA JVM

– If not using IBA, then clear out any old entries from YFS_IBA_TRIGGER table 
using inventory purge agent

Why IBA causes blocking locks ?

IBA documentation link -> 

JB

https://www.ibm.com/support/pages/why-does-item-based-allocation-iba-cause-blocking-locks-database
https://www.ibm.com/docs/en/soms?topic=SSGTJF/configuration/r_Item-BasedAllocationIBAOrder.htm


Sterling Inventory Visibility
OMS – IV Integration

IBM Sterling / © 2023 IBM Corporation 11

If there is an unexpected spike in the number of cancellations or 
backorders, what are various factors that need to be reviewed?

– Sourcing configurations still maintained at OMS

– Capacity definition, capacity availability or cache capacity

– Node marked as having incorrect availability- Entry in 
YFS_INVENTORY_NODE_CONTROL 

– Node notification time

– Calendar, and Carrier service schedule 

– Scheduling Rule, Optimization and Line dependencies

– Unsupported delivery method

Token Management

– Reuse IV token as much as 
possible; not reusing can negatively 
affects performance. 

– Automatically regenerate a token 
before the expiration time or as part 
of error handling on 401 
Unauthorized or 403 Forbidden 
response.    

Considerations

– Recompute Network Availability API to recompute DG availability

– Using Node fulfillment override to handle node capacity or to turn 
on/off fulfillment from Stores according to their opening hours.

» expiryTs vs. onhandEarliestShipTs

– Optimize on inventory change events (snapshot). If not using 
different delivery methods, then disable it. Prevent consumer from 
getting overload. 

– Handle expired reservations

» defaultExpirationMinutes

Best Practices

– Beware of rate limits

– Use Optimal Payload

– Use New/enhanced APIs

– Avoid redundant Snapshot calls

– Monitor for failed events

– Avoid redundant availability 
recomputes

Objectives

– Accurate Inventory picture

– Avoid slow API response due to excessive token generation. 

SB



Discussion Points

– Review CPU and memory resource requests and limits, define 
optimal profiles, and agent & integration threads. 

» Watch for CPU throttling.

– Adjust Default Executor Threads, Data source pool size according 
to serverProfile you have defined for the Application Server.  

– Separate traffic using appServer.ingress.contextRoots

» [smcfs, sbc, sma, icc, isf, adminCenter]

– Pod/Cluster Autoscalers.

– Network monitoring, latency to Database and JMS server; have 
network utility to validate the connections. 

– Understand & Tune Ingress/Egress request/response limits

OMS certified containers
Performance & Optimization

IBM Sterling / © 2023 IBM Corporation 12

serverProfiles:
- name: ""

resources:
limits:

cpu: millicores

memory: bytes

requests:
cpu: millicores

memory: bytes

Best Practices

– Update to latest quarterly release prior to freeze 

– New fixes will be available on top latest quarterly release i.e., 
September 2023 (10.0.2309.0)

– Deployment strategy (blue / green, canary, etc.)

– Avoid automatic operator updates for production. 

– Review and be prepared to captured diagnostics as per the Mustgather. 

» Mustgather for IBM Order Management Software Certified Containers: Performance 
Issues →

– Check for SSL certificate validity for all internal and external 
communications. 

– Tune readiness / Liveness probes

– Monitor NFS IOPS for shared mounts used to store certs, catalog 
index, etc. 

– Reduce redundant RMI calls; verify host ulimits (Open File/Socket)

Objectives

– Scale seamlessly for peak workload. 

- name: agents-huge
profile: ProfileHuge
property:
customerOverrides: AgentProperties
envVars: EnvironmentVariables
jvmArgs: BaseJVMArgs

replicaCount: 1
agentServer: 
names:[ScheduleLargeServer,ReleaseLargeOrderServer]

SB

https://www.ibm.com/support/pages/mustgather-ibm-order-management-software-certified-containers-performance-issues
https://www.ibm.com/support/pages/mustgather-ibm-order-management-software-certified-containers-performance-issues


Journey to Peak Success

How to Succeed
Plan

q Retrospective

q Latest product levels

q Detailed projections

q Catch prior webcasts

q Engage help as needed

Prepare

q Align to IBM schedule

q Representative testing

q Proactive housekeeping

q Clean up the noise

q Track risks

Execute

q Clear runbooks, RACI

q Quickly detect issues

q Throttle as necessary

q Quick mitigation

MCIBM Sterling / © 2023 IBM Corporation



Enhanced
Event Readiness
Offering

A proactive engagement 
leveraging a methodical 
approach to provide 
targeted, prescriptive 
guidance toward stability 
and success on IBM Order 
Management

14

IBM Event Readiness Team

OMS Performance Experts apply 
years of proactive preparation and 
support of worldwide clients for 
successful go-lives and peak events

ü Identify, mitigate potential risks

ü Align to proven best practices

ü Peak day mitigation techniques

Support Experience Team prioritize 
Support workload, augment 
communication and escalation to help 
avoid blockers

Expert Labs (optional) 
available to perform comprehensive 
reviews and health checks

Event Readiness is modelled as 80-120 hour 
engagement over 4 months – partnering as you prepare, 
test, and execute go-live or peak event; For November 
peak, our Engagement must begin no later than 
September 1, 
ensuring ample time to proactively review, implement, 
and validate recommendations

Database
workload

review

Application
workload

review

Production
performance

review

Peak Projection 
and Capacity

validation

Application
Configuration

Audit

Best Practice
Enablement, 
Consultation

SWAT 
Peak Day 
Standby

Support Backlog
Reviews, 

Prioritization

Peak Day
Readiness
Checklist

IBM Sterling / © 2023 IBM Corporation



IBM Advanced 
Support Offering

An enhanced support 
experience on top of your 
active IBM support 
subscription, providing 
prioritized case handling 
and shorter response time 
objectives

Priority access to Senior 
Technical Support for 

accelerated issue resolution

7x24 coverage for mutually 
agreed Sev-2 requiring 

urgent attention

Named IBM Advanced 
Support Focal (ASF) 

within business hours

Monitor, manage, escalate critical 
cases and provide period case 

status reports and trends

Cases handled with higher 
ongoing prioritization 
within Severity level

Enhanced Initial Response 
SLOs including <30 min 

for Severity 1

IBM Sterling / © 2023 IBM Corporation

NEW in 
2Q23!



Are you ready?

16

Technical Best Practices

IBM Sterling / © 2023 IBM Corporation



Best Practices

Apply Recommended Configuration

IBM Sterling / © 2023 IBM Corporation 17

We leverage learnings from each go-live, peak event, all critical production issues to continuously 
improve our internal and external published Best Practices

JB

Integration

ü Use JMS session pooling
ü Avoid message selectors
ü Enable service retry (transaction 

reprocessing)
ü Have timeout’s for up/down stream 

synchronous calls
ü Inventory Visibility (SIP)

Database

ü Maintain transactional tables, Purge 
(set appropriate retentions)

ü Serviceability & Monitoring
ü Minimize contention, maximize 

concurrency
ü Optimize long-running or expensive 

queries
ü Enable stmt_conc (LITERALS)*

Application

ü Use Optimal API and optimize output 
template

ü Fine tune entity cache, disable 
redundant.  

ü Use HOTSku & OLA configuration
ü Enable capacity cache
ü Set  API isolation level based on the 

use case
ü Use pagination for getter APIs 



Application 
Performance

API Performance

– Network / Client Logic
– API Input
– Session Management
– Debug/Logging Statements
– Business Logic
– Database Operations
– Call to External System

– Time to Establish Connection
– Payload
– Connect/Socket Timeout

– Change/On-Success Events
– JMS Operations

– Message Size
– Output Template

01

IBM Software | Internal use only 18

Best Practices

– Validate API input before calling API, ensure required or filtrable attributes are passed 
(avoid open ended SQL). 

– Limit the input size
– Tune servlet.token.absolute.timeout properties to prevent YFS_USER_ 

ACTIVITY locking under heavy load. 
– Select appropriate SelectMethod method for getter API’s

– Possible values are NO_LOCK, NO_WAIT, WAIT, etc
–QueryTimeout="3" TimeoutLockedUpdates="Y"

– Keep transaction boundary small when using update/modify API, this will ensure DB object 
(row) is locked for minimum duration. 

– Use appropriate connect and read timeout for external calls, preferably less than 5 seconds, 
and make use of connection pool (cached/persistent connection, keep-alive).  

– Use optimal API output template to limit unnecessary data reads.
– Remove always on DEBUG or SystemOut statements
– Eliminate frequent SELECT by enabling entity cache. 
– Disable redundant cache (always miss or frequently evicted) 
– Use pagination (getPage) for getter APIs. 
– Use Timeout properties for DB calls, yfs.agentserver.queryTimeout, 
yfs.ui.queryTimeout



Application 
Performance

API Performance

– Business Logic (promising)
– Sourcing Optimization
– Inventory Update (HOTSku)
– Capacity Update
– User Exits

02

IBM Software | Internal use only 19

Best Practices

– Enable HOTSku, and OLA configuration. 
– Use Capacity Cache

– Enable node locking / threshold properties based on the business use case. 
– Reduce the lock contention in the YFS_RES_POOL_CAPCTY_CONSMPTN table by enabling 

yfs.capacity.useMassAdjustCapacityDriver & yfs.persitCapacityAdjustments properties. Refer 
to slide 9 for additional guidance. 

– Aggerate reservation calls to IV, this improves performance of reserveAvailableInventory API
–yfs.UseAggregatedReservationsForIV property to “Y”

– Cache configuration data using entity caching
– Example: YFS_REGION, YFS_REGION_DETAIL, YFS_ATTR_ALLOWED_VALUES, 
YFS_ATTR_ALLOWED_VAL_LOCALE

– Avoid using current timestamp value as part of query predicate (this makes caching redundant 
due to unique value)

– Remove unwanted attribute/items from the output
– Example: Let’s say if you are correcting inventory using 
YFSGetAvailabilityCorrectionsForItemListUE, then make sure output of the UE 
excludes the items with ZERO supply quantity before passing the result to OOB API. 

– Enable API interrupt properties to avoid runaway transactions
– Run Inventory purge 



Application 
Performance

UI Performance 

– Web Store (wsc/isf)
– Call Center
– Order Hub

03

IBM Software | Internal use only 20

Best Practices

– Apply recommended configuration around API performance
– Run purges prior to peak to ensure transaction tables such as YFS_ORDER_RELEASE_STATUS, 
YFS_ORDER_HEADER, YFS_ORDER_LINE, YFS_SHIPMENT, etc are lightweight. 

– Cache critical configuration data using entity cache: YFS_REGION, YFS_REGION_DETAIL, 
YFS_ATTR_ALLOWED_VALUES, YFS_ATTR_ALLOWED_VAL_LOCALE

– Add the following indices to enhance the performance of the Batch Pick
– Index on the STORE_BATCH_KEY column of the YFS_SHIPMENT_LINE table.
– Index on the SHIPNODE_KEY and INCLUDED_IN_BATCH columns of 

the YFS_SHIPMENT table.
– Set the property yfs.applyChildContainerQueryOptimization=Y in DB properties to 

optimize the query on the shipment container table while fetching child containers.
–closeManifest API must be called asynchronously 
– Control/Set polling interval of Store/CC dashboard widgets
–  Call GetStoreBatchList with optimum values for MaxNumberOfShipments, 
NoOfShipmentLinesForNewBatch

– Purge YFS_INBOX table, identify and address root cause of the exception, keep exception to 
minimal 



Application 
Performance

Order Flow

– Create Order
– Hold Processing
– Order Monitor 
– Payment Server
– Schedule Order
– Release Order
– Create/Consolidate Shipment
– RTAM
– Purge

04

IBM Software | Internal use only 21

Best Practices

– Apply recommended JVM performance properties
– Review order and shipment monitors for redundancy, review and remove obsolete monitor 

rules. 
– Avoid reprocessing of order once condition evaluates to false. 
yfs.yfs.monitor.stopprocessing.ifcondition.eval.false=Y 

– Tune next task queue interval of "Process order hold type" agent from 15 minutes to the 
customized value yfs.omp.holdtype.reprocess.interval.delayminutes

– Have dedicated schedule order server to process backorders using OrderFilter= N|B agent 
criteria flag.

– Separate out the processing of orders by one of the attributes (ex. Large order, etc) with 
workload separation feature. 

– Apply and Tune OMoC default HOTSku and OLA configuration 
– Enable Capacity cache and tune node locking properties based on business use case. 
– Apply sourcing optimization (reduce DG size) 
– When using YFSGetAvailabilityCorrectionsForItemListUE, make sure output of the 

UE excludes the items with ZERO supply quantity before passing the result to OOB API. 
– Apply solver/sourcing interrupt properties to prevent runaway transactions
– If capacity is enabled, then make sure to double check the calendar setting (store hours, etc.) 

for peak. 
– Disable capacity instead of setting it very high value.
– Control/Throttle use of createInventoryActivityList API when using capacity filled event. 
– Run Inventory purge

https://www.ibm.com/support/pages/node/480961


Integration

JMS Performance

– Message PUT slowness
– Agent (GetJobs) slowness
– Consumer is slow

05

IBM Software | Internal use only 22

Best Practices

– Review MessageBufferPutTime relative to ExecuteMessageCreated statistic from 
YFS_STATISTICS_DETAIL table for any slowness

– Use non-persistent queues for internal agent queues
– User persistent queues for external integration or integration server processes.
– Avoid using message Selector, instead have dedicated internal/external queues
– Avoid longer transaction to prevent MQRC_BACKED_OUT error message
– Optimize output template to prevent MQRC_MSG_TOO_BIG_FOR_Q error while posting a message 
– Enable JMS Session Pool

–yfs.yfs.jms.session.disable.pooling=N
– Use anonymous reuse (requires JMS Session pooling to be enabled)

–yfs.jms.sender.anonymous.reuse
– Enable multi-threaded PUT’s

–yfs.yfs.jms.sender.multiThreaded=Y
– Enable JMS connection retries

– Retry Interval (milliseconds) 100 ms
– Number of Retries – at least 3 retries.

– Enable agent bulk sender properties to POST message in batches.
–yfs.agent.bulk.sender.enabled
–yfs.agent.bulk.sender.batch.size=5000 (increase as needed)



Integration

External System

– Sterling Intelligent Promising
– Inventory Visibility

– Store Inventory Management
– Order Optimizer 
– Order Service 

06

IBM Software | Internal use only 23

Best Practices

– Use connection pool (cached/persistent connection, keep-alive) with appropriate connect and 
read timeouts.   

– Cache authentication token for reuse, regenerate upon expiry, or 401, 403 status codes.
– Use  
– Adhere to best practice when invoking Inventory Visibility APIs. 

– Use 100 item-node per payload when invoking APIs for multiple lines.
– Implement polling process to retrieve failed events. 
– Space out the sync supply and snapshot calls, check with all stakeholders for ad-hoc execution or 

special requests during peak.
– Avoid redundant calls to generate snapshot

– Avoid redundant Network availability recomputes
– Recompute Network Availability API recomputes availability for existing DG.
– Update DG API will recompute availability for newly created or modified DGs but not for 

existing DG.
– Turning on/off existing nodes. 

– Make sure to review release notes and API documents.  
– Timely refactor the logic to avoid running into unforeseen risks of using deprecated or 

discontinued APIs. 



Database 07

IBM Software | Internal use only 24

Best Practices

– Enabling property yfs.yfs.app.identifyconnection=Y to identify the source of DB query / 
connection. 

– Control database size
– Compressing the CLOB data using entity compression feature
– Execute order audit and order release status purge
– Disable unwanted audits. 
– Do not use YFS_EXPORT table for debugging purpose. 

– Enable stmt_conc (LITERALS)*
– Avoid full table scan with ConsiderOracleDateTimeAsTimeStamp attribute when using Oracle 

database. 
– Identify the optimal cache sizing through your performance testing
– Monitor the frequently invalidated table caches and disable them if needed
– Ensure SQLs aren’t formed with unique values at runtime, it impacts the cache reusability.
– Blank queries, one of the common use case when non optimal API input is passed in. Ensure APIs 

are invoked with key filtering attributes.
– Enable performance features and properties required for concurrent workload to avoid DB 

contentions (HOTSku, Capacity, etc.) 
– Disable resource intensive database maintenance during peak period (such as offline reorg on 

critical table)
– Tune / Avoid ad-hoc queries used for reporting purpose, if possible, use standby or replica 

instances to query.
– Monitor database for long queriers and queries in lock-wait, and transaction logs usage. 

Database Performance

– High DB response time
– Contention
– Long running queries
– High DB CPU/IO
– DB Transaction logs
– Backup takes time

– DB is too BIG!  



Performance Testing & 
Optimization 

25Intelligent asset management

Performance is a non-functional requirement, impacting the quality of the user experience

A strategy for a good performance test is to use a mixture of concurrent scenarios that involve read 
and write operations. 

Plan
Establish and quantify 
goals and constraints

What business wants? 

Identify KPI’s & NFR’s

Prepare
Populate the application 
with realistic data

Use a phased ‘stair-case’ 
model

Execute

Simulate workload

Tune!

Scale

Until it meets your NFRs!

SB



Performance Testing & Optimization

Performance Testing Guidance 

IBM Sterling / © 2023 IBM Corporation 26

Performance testing is an art, but a mandatory one! It is imperative to vet out issues in advance on pre-production load testing, 
rather than wait for it to surface as a business-critical production issue!

SB

1. Projected peak volumes – Ensure business and IT are in sync on expected peak loads to 
ensure planned tests are accurate. 

2. Representative Combination Tests – Assemble components to reflect real time DATA, 
scenarios and run in parallel to ensure adherence with NFR; Stage data for various 
components and run them under full load (ie. Create + Schedule + Release+ Create Shipment 
+ Confirm Shipment + Inventory Snapshot (IV) )

3. Agent and integration servers – ensure asynchronous batch processing components are 
tested in isolation and in combination with broader workload; ensure to tune agents 
(processes, threads, profile) to meet expected peak SLAs/NFRs on throughput 

4. Test Failure Scenarios – validate resiliency of overall system and operations, ensuring graceful recovery if front-end channel (web, mobile, Call Center, Store, EDI, JMS), 
backend OMS, or external integration endpoints fail. Include ‘kill switches’ in any components that can be disabled to avoid magnifying an isolated issue into system 
wide one, especially for any synchronous calls.

5. Confirm Peak days and Hours - Share any specific key dates or max burst times with IBM Support, including code freezes, flash sales. 

6. Coordinate with IBM  - Inform IBM (CSM/Support) in advance when load tests are planned if any data or diagnostics (such as against Database) are needing to be 
captured; IBM can also then review internal metrics and response in parallel. à Inform IBM in advance of major configuration changes (sourcing rule: Increase in 
Ship from Store orders). 

Refer to Knowledge Center for detailed Tuning and performance guidance.

Metric 2022 Peak 2023 Projected 
Peak

2023 Load Test Peak

Orders / hour (max) ? ? ?

Orderlines / hour (max) ? ? ?

Get Inventory Availability ? ? ?

Reserve Inventory ? ? ?

Inventory Adjustment trickle ? ? ?

Inventory Adjustment burst ? ? ?

Concurrent Store/CC users ? ? ?

https://www.ibm.com/support/knowledgecenter/en/SSGTJF/performance/performance/c_omc_performance.html?pos=2


27IBM Sterling / © 2023 IBM Corporation

Performance Testing & 
Optimization

Server Profile

Order Capture

↓

Payment Collection

↓
Payment Execution

↓
Hold Processing

↓
Schedule Order

↓
Release Order

↓
Consolidate 

To 
Shipment

↓

Select optimal performance profile
Select optimal server profile and thread configuration for agent processes and integration service to ensure service 
can scale w/ custom logic and configuration. 

Recommendations:
• Spawning additional (untuned) instances of agent to try and improve throughput  let to exhaustion of resource allocation available

• Review KC Guidelines to select performance profile | Review community article on Sterling OMS Performance Profiles 

Example: Target to achieve 30k TPH for createOrder w/ 2.5 average lines

Optimal Solution:  
Threads = 3
Performance Profile = Compute 
JVM Instances = 1

Approach:

Configure create order 
integration server in OMS

Execute and monitor the server 
performance via Self Service Tool

Observe and Adjust the configuration 
until throughput is achieved

↓

↓

Initial Threads =1, Performance Profile = Balanced
Default # of JVM Instances = 1

Monitor KPI’s: API Response time (ms), Invocations 
(rpm), 
Container CPU Utilizations, GC CPU Utilizations, 
JVM Heap Utilization, and Order Lines Throughput

Increase the # of threads
Switch Performance Profile
Increase the # of JVM instance 

NOTE: Below numbers represent OOB createOrder with some customization

SB

O
rder Processing Funnel

https://www.ibm.com/docs/en/order-management?topic=platform-guidelines-select-performance-profile
https://www.linkedin.com/pulse/sterling-oms-performance-profiles-bobby-Thomas


Plan and take necessary action to position y(our) solution 
for peak success, it is critical to TAKE ACTION NOW!

01
Database Hygiene

q Ensure all necessary purges are running to maintain healthy & lightweight database, which 
in-turn minimizes performance issues. 

q Disable unnecessary transaction audits (Order Audits, General Audits, etc.)

q Implement entity level database compression for custom and OOB CLOB column types. 

q Leverage Self-Service database dashboards; continuously review top tables optimization 
opportunities.

q Review and consolidate agent and integration workload to optimize resource allocation. 

q Select correct JVM profile (*OMoC NextGen) based on analysis from verbose GC logs or 
your -Xmx/-Xms parameters (Legacy/On-Premise)

q Review and optimize long running transactions; average async transaction response time 
should be below 1 seconds. 

q Review common configuration (RTAM, HotSku, JMS), based on the prior recommendations. 

q Reduce message payload by optimizing API, event templates, pull only required data.
q Restrict output by setting the MaximumRecords in the inputs to any list API calls; use 

pagination (link) 

q Review reference data cache; catch redundancy by analyzing application logs for frequent 
cache drops (i.e., ‘Clearing cache’). Frequent refreshes of MCF reference data cache can 
lead to performance issues. (link)

q Review errors and ensure errors are addressed to avoid noise, if not address it could 
mislead during crunch time, also it could cost performance during elevated load, impacts 
our ability to monitor the system effectively.

IBM Sterling / © 2023 IBM Corporation 28

02
Slow Transactions

Y(our) actions

– Mmaintaining healthy database can prevent 
disruption in production.

– Reduce the IBM Sterling Order Management 
database size with entity level compression and 
enhanced purges. 

More details →

↓

– Long running transaction can lead to DB contention, 
and resource problem on JMS (MQ Server).

– Limits your ability to (auto) scale based on KPIs.

– Achieve scalability with smaller lightweight 
transactions. 
 

SB

https://www.ibm.com/docs/en/order-management?topic=platform-guidelines-select-performance-profile
https://www.ibm.com/support/knowledgecenter/en/SSGTJF/self_service/tasks/serverProcesses.html
https://www.ibm.com/support/knowledgecenter/en/SSGTJF/self_service/ss_configservers_nonIKS.html
https://www.ibm.com/support/pages/rtam-troubleshooting-and-useful-features
https://developer.ibm.com/articles/ibm-sterling-order-management-system-hot-sku-performance-tuning/
https://www.ibm.com/support/pages/mq-omoc-gearing-peak
https://www.ibm.com/docs/en/order-management?topic=database-order-management-apis-services
https://www.ibm.com/support/pages/what-can-cause-frequent-mcf-reference-data-cache-refreshes


Plan and take necessary action to position y(our) solution 
for success, it is critical to TAKE ACTION NOW!

03
User Exit

IBM Sterling / © 2023 IBM Corporation 29

04
External Calls

– Make sure correct authorization IDs are stamped along with 
corresponding expiration dates.

– Records having the same authorization IDs should have the same 
authorization expiration date. 

– Handle all the exceptions from the collection UE. Otherwise, 
charge and authorization transactions will get stuck in the 
'invoked' user exit status.

– RecalculateLineTaxUE and RecalculateHeaderTaxUE 
output should include all necessary taxes to avoid wiping out 
previous existing taxes.

↓

– Periodically review the response time of the external calls to 
payment system.

– Implement both connect and socket read time to ensure external 
call does not wait in socket-read indefinitely.

– Long running transaction can lead to DB contention, and resource 
problem on JMS (MQ Server).

– Unforeseen performance issues and impact to other components. 
 

JB/VG

Dont’s

q Do not take authorization as part of createOrder when Dynamic CTR Distribution is 
enabled.

q Do not call processOrderPayments as part of long transaction boundary.  This API is 
intended for In-person scenarios e.g., carry lines.

Note: This API cannot be used with any of the order modification APIs or any APIs that modify 
orders - either through events, multiApi calls or services. 

The requestCollection() API will be invoked in a new transaction boundary and with a 
special condition - each Charge and Authorization request created will have 
UserExitStatus set to "ONLINE". When requestCollection() is complete, it will 
return to processOrderPayments() and execute a commit in the new transaction 
boundary then close it. Thus, even if an error is thrown after this point, the database will not 
rollback the changes made by requestCollection(). Javadoc →

q Do not useUnlimitedCharges on the payment method.

Do’s

q If Dynamic CTR feature is enabled, use manageChargeTransaction API and create 
separate authorizations for each release/shipment.  If single line has multiple releases, then 
one CTR should be created for each release.

q Review the javadocs before implementing processOrderPayments, and use 
RequestCollection, ExecuteCollection, RequestCollection.

q Avoid redundant processing of orders by the payment agents.  Use the getJobs query to 
verify eligible orders.



1. Resource/Hardware sizing based on segment profile, but is validated as OUTCOME 
of performance testing, not a replacement for it

2. Database is common bottleneck, not due to capacity, but untuned queries, missing 
indexes, competing processes, unqualified end-user searches

3. Underlying config data has significant impact on performance, including database 
query execution plans, inventory sourcing rule evaluation

4. Accumulation of transactional data over long periods of time (and failure to purge as 
possible), may degraded query performance

5. Item distribution and commonality must reflect realistic peak load; high-demand / 
hot items (free-gift) may significantly impact concurrent processes

6. Composition of a custom service (Service definition framework) can lead to 
inefficient execution or potential lock contention, reducing throughput

7. Understanding queueing/de-queueing rates to align with business SLA / expectation 
(ie. create order, confirm shipment); SI needs to know when there is an issue to 
intervene / troubleshoot (ie. particular queue depth)

8. Agent/integration server throughput must be sufficient, but remain below max 
resource allocation; varies on number of instances, server profile

9. Important to understand / validate impact to upstream application (eComm) if 
specific synchronous calls into OMS slow or become unavailable

• Over the past few years order fulfillment has shifted to stores with BOPIS, which made 
DG significantly larger, which led to more time for synchronous inventory availability 
calls; similar scenarios where client had to split nodes in DG to improve throughput

• Rapid ramp up of in-store associates led to several unqualified searches in Store and 
Call Center apps which caused significant overall degradation

• multiAPI made 8 successive API calls led to poor response, needed to be refactored to 
use asynchronous requests (via MQ to drop message on queue)

• Custom service call to getOrderList API was missing OHK in input, each invocation 
caused fetch of 5K records which led to a crash, had to limit records

• Needed to throttle down instances/threads of agent to reduce concurrency contention 
issues (Create/Schedule/Release) and optimize throughput 

• Gradual memory leak led to out-of-memory condition after a couple days;  similarly, 
untuned heap led to excessive GC overhead, high CPU, slowness

• Daily manual processing of orders via java client against single JVM bypassed load 
balancer and overwhelmed JVM to OOM/crash

• Upstream eComm site was unable to gracefully handle a short period of unavailability 
from backend OMS and took hours to recover

• Unintentionally carrying capacity for high volume node during the peak. (Example: 
Popup /Temporary fulfilment warehouse) 

• Avoid changes to DG in IV during peak time

To best position for success on the OMS platform, it is important to understand how your application handles various scenarios known to 
challenges performance or stability. Testing in pre-production with data/workloads representative of production enables ability identify 
and address issues without impact to production business and operations.

Real Scenarios (Real impact…)

Position for Peak Success

30SB


